Multiple lymphoid nodules in bone marrow have the same clonality as underlying myelodysplastic syndrome recognized with fluorescent in situ hybridization technique

Author(s):  
Wichean Mongkonsritragoon ◽  
Louis Letendre ◽  
Chin-Yang Li
Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1502
Author(s):  
Jorge García-Hernández ◽  
Manuel Hernández ◽  
Yolanda Moreno

Vibrio parahaemolyticus is a human food-borne pathogen with the ability to enter the food chain. It is able to acquire a viable, non-cultivable state (VBNC), which is not detected by traditional methods. The combination of the direct viable count method and a fluorescent in situ hybridization technique (DVC-FISH) makes it possible to detect microorganisms that can present VBNC forms in complex samples The optimization of the in vitro DVC-FISH technique for V. parahaemolyticus was carried out. The selected antibiotic was ciprofloxacin at a concentration of 0.75 μg/mL with an incubation time in DVC broth of 5 h. The DVC-FISH technique and the traditional plate culture were applied to detect and quantify the viable cells of the affected pathogen in artificially contaminated food matrices at different temperatures. The results obtained showed that low temperatures produced an important logarithmic decrease of V. parahaemolyticus, while at 22 °C, it proliferated rapidly. The DVC-FISH technique proved to be a useful tool for the detection and quantification of V. parahaemolyticus in the two seafood matrices of oysters and mussels. This is the first study in which this technique has been developed to detect viable cells for this microorganism.


2011 ◽  
Vol 8 (8) ◽  
pp. 2075-2088 ◽  
Author(s):  
C. Borrelli ◽  
A. Sabbatini ◽  
G. M. Luna ◽  
M. P. Nardelli ◽  
T. Sbaffi ◽  
...  

Abstract. Benthic foraminifera are an important component of the marine biota, but protocols for investigating their viability and metabolism are still extremely limited. Classical studies on benthic foraminifera have been based on direct counting under light microscopy. Typically, these organisms are stained with Rose Bengal, which binds proteins and other macromolecules, but does not allow discrimination between viable and recently dead organisms. The fluorescent in situ hybridization technique (FISH) represents a new and useful approach to identify living cells possessing an active metabolism. Our work is the first test of the suitability of the FISH technique, based on fluorescent probes targeting the 18S rRNA, to detect live benthic foraminifera. The protocol was applied on Ammonia group and Miliolids, as well as on agglutinated polythalamous (i.e., Leptohalysis scottii and Eggerella scabra) and soft-shelled monothalamous (i.e., Psammophaga sp. and saccamminid morphotypes) taxa. The results from FISH analyses were compared with those obtained, on the same specimens assayed with FISH, from microscopic analysis of the cytoplasm colour, presence of pigments and pseudopodial activity. Our results indicate that FISH targets only metabolically active foraminifera, and allows discerning from low to high cellular activity, validating the hypothesis that the intensity of the fluorescent signal emitted by the probe is dependent upon the physiological status of cells. These findings support the usefulness of this molecular approach as a key tool for obtaining information on the physiology of living foraminifera, both in field and experimental settings.


1993 ◽  
Vol 44 (2-3) ◽  
pp. 329-338 ◽  
Author(s):  
Isabelle Vassias ◽  
Sophie Perol ◽  
Laure Coulombel ◽  
Marie-Christine Thebault ◽  
Philippe H. Lagrange ◽  
...  

Blood ◽  
1998 ◽  
Vol 92 (7) ◽  
pp. 2315-2321 ◽  
Author(s):  
Ismael Buño ◽  
William A. Wyatt ◽  
Alan R. Zinsmeister ◽  
Jeanne Dietz-Band ◽  
Richard T. Silver ◽  
...  

Abstract Using a highly sensitive fluorescence in situ hybridization method with probes for BCR and ABL1 (D-FISH), we studied 37 paired sets of bone marrow and blood specimens, collected within 24 to 96 hours of each other, from 10 patients before and during treatment for chronic myeloid leukemia (CML). The normal range for 500 interphase nuclei was ≤4 (≤0.8%) nuclei based on 10 bone marrow and 10 blood specimens from normal individuals. The percentage of neoplastic nuclei was usually lower in blood than bone marrow. However, changes in the percentage of neoplastic nuclei in blood and bone marrow tracked closely over the course of therapy and with the results of quantitative cytogenetic studies on bone marrow. This result indicates that D-FISH is useful to test blood from patients with CML to monitor therapy. Moreover, by analysis of 6,000 nuclei with D-FISH, residual disease was identified in bone marrow and blood for patients in complete cytogenetic remission. Consequently, D-FISH analyses of interphase nuclei from blood could substitute for Q-cytogenetic studies on bone marrow. Thus, it may not be necessary to collect bone marrow samples so frequently to monitor therapy in CML.


Sign in / Sign up

Export Citation Format

Share Document